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1 Introduction

Recently there has been renewed interest in fmite-diference algorithms of high orderof

accuracy (4_ and above), both for hyperbolicand parabolicp.d.e's (see for ea-ample,[1], [2],

[3] ). The advante4_ of high-order accuracy schemes, especially for truly time dependent

problems, are often offset by the di_cu]ty of imposing stable boundary conditions. Even

when the scheme is shown to be G.K_.-stable the e_ro_may inaease exponontial_vin time.

This pq_er is mncemai with 4e_-orderapprozimations to the long time mlutions of the

diffusionequ&tionin one and two dimensions, on i_ar domains. By an irregulardoa_n,

we mean a body whose boundarypo/n18do not _incide with nodes of a zectanf_lar mesh.

In section 2 we develop the theory for the one-dimmsional semi-disaete system resuKin8

from the spstid differentiationused in the finite dNerence algorithm. Enor_ methods

used in conjunction with "SAT_ type terms (see [I]), in orderto find boundary conditions

that preservethe accuracy of the scheme while comtrainingan enersy nozm of the errorto

be temporally bounded for all t > 0 by a constant proportionalto _be truncation error.

Insection 3 it is shown how the methodology developedin section 2 is used as • building

block for the multi-dimensionalalgorithm, even for irregularshapes containing "holm."

Section 4 presents numerical results in two space dimemions illustrating the long-time

temporal stability of the method, in c0atradistinctioa to "standard"methods for cartesian

grid on irregul_ shapes.
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2 The One Dimensional Case

We consider the followins problem

8:u
•_. - k_-iz_+ I(z,t)_ r_,< z < rR, t _>o, k > o (2.Is)

.(z,0)= .o(z) (2.]b)

.(r,,t) = s,P) (Z.lc)

,,(rR,t)=9_(t) (Z.ld)

sodJ'(z,t)• _.

Let usSl_islly discritise(Z.la) on thefullowinsuniformgrid:

xI _ _ x,, 5 z_ _ _ zM

Figure 1: One dime_sion,dsrid.

l_'otechat the bounding,points do not necms_ly coincide with z: and zt,-. Set zj+: - J:j = A,

l<j<.¥-l; zs-F,---?_h, 0_<'_z,<l; Fn-z_.='TRh, 0_<'v_<l.
!

'/he projection unto the ,dove grid of the exact solution u(z,t) to (2.1), is u_(t) -

u(zj, t) _- u(t). Let/_ be a matrixrepnmentin$the second partial derivativewith respect to

z, at internal points without speci_yins yet how it is being built. Then _m may write

d
_u(t) = _[t_u(t) + B + TI + t'(t) (2.2)

2
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where T is the trunc_on eaor due to the numerical di_erontia_ionand f(t) = J'(z_,t),

. I < j < ,Sr. The boundary vector B has entries whose vllues depend on g_,g_t, "yr.,_t in

such a w_ that bu + B repms_ts the _ derivstive evmywhero to the desired accuracy.

"/'bestandard way of finding a numericalapproximate scdutieuto (2.1) is to omit T horn

(2.2) Lnd solve

_v(t) = +B)+ f(t) (2.3)k(Dv( t )

where v(t) is the numerical approximation to the projection u(t). An equation for the

solution error vector, _1) = u(t) - v(t), can be found by subtragtiug (2.3) from (2.2):

_¢= +kT(,) (2.4)/:/)L_t)

ours_q.ire:eutfar_meomt__ b _at U_"II,_ _ ,_m o.r_',_ _o._eabu•

"mea:a::" propor_oul to k" (m beingthe spati,doederof _ccur_'y)for _! t < :o. Note

that thisdefinitionismoreNvesethaneithertheG.K.S.,t_ility criterion[4]orthe derudc_u

inp].
It cambeshownthat if b isconstructedin a stondm_!maane:,i.e., thenumericalsecond

derivative is symmetric Lw_yhorn the bouudaries, ond nesz the boundaries one uses non

symmetric di_z_tiz_tion, the_ there m _ of v_lues of "eaand % for which L) is

not negative definite. Since in the multi-dimensional case one may oncounter _dl_lue_ of

0 < _:.,'yn < 1, this is unacceptable.

The res_ of this section is devoted to the construction of • scheme of 4_' orde_ spatial

_ccur_cy,whicb is temporarilystable for all %,'y_.

3



The basic ide_ is to use a penalty-like term as in the SAT procedure of rof [1]; here,

however,it will be modified and applied ia a differemtmanner.

Note first thLt the solution projection uS(g) sati_m, besides (2.2), the following d/ffer-

ential equation:
dU
-- = k_ + kT, + f(t) (2.5)dt

wherenow D is indeed a di_ere_tiation matrix: that does not use the boundary values, and

thereforeT, _ T but it too is a truncation error due to difese=tiation.

._e.xt let the semi-discrete problemfo_v(t) be, instead of (2.3),

&

where f,z -- (1,. .. ,1)1"9,(t); ga = (l,...,l)_'sn(t). are vectors ¢re_ted from the left and

right boundary values _, shown. The mstrke, As and An are defined by the relaziom:

ALu = gz - Tz; ARu = ga - Ta, (2.7)

i.e., each rowin AI.(Ajt) is composedof the coefficientsextrapolating u to its bounds, value

gL(gR), St FL(Fn) to within the desiredorderof accuracy.(The erroris the-, TI.(TR).) The

dia/_oaalmatrices1"t.ud rn aregiven by

n = (2.S)

Subtracting(2.6) from(9.5) weget

de" k[D_- rLAt._- _nAn_ + TI] (2.9)&

4
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where

, Tt = T, + _Tz. + _'eT_

, Taking the scalarproductof _'with (2.9)one gets:

IIr11'= - +
, = k(r,M_+t(v.T_) (2.10)
I

i We notice that (_,M_ is (_ (M + M7")_12,where

= - nA_,- _A_. (2.11)
M D

,.

' If M + _n' canbemade neKativedefinite then

(_,(_ +M_)r/__<-co fl_n', (co>o). (2.1_)

Equatiml (2.10) then becomes

2& |/.j_2< -k¢o JlFIIs +k(F,Tt)

and using ,_hwartz'. inequality we Set a/tel dividins by [[t"[[

-_II_'ll-.-ace I i'll+t IfT_ II&

and therefore (using the f_t that. v(O) - u(O))

II_'11<ItTI fl_(l- e-_.') (2.13)
co

5
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where ", tant" IITz I1" MTtO')IJ-

If we indeed succeed in ccastructinS M such tl_t M + MT is nes_tive definite, with co > 0

indepemdentof the size of the matrix M u it increases, themit follows from (2.13) thzt

the norm of the error will be bounded for all t by • constont which is O(hm) where m is

the sp_sd accuracy of the finite difference scheme (_-6). The numeric_ solution is then

temporally stable_

The rest of _ section is devoted to t_is task for the case of m = 4, i.e a fourth order

accurate finite differencealgorithm.

Let the n x. difecemistionmatrix, D, begivenby

45 -154 214 -156 61 -10
10 -15 -4 14 -6 1

-1 16 -30 16 -1
-1 16 -30 16 -1

-1 16 -30 16 -1

1
wmM0mmms i

12_:_
Qe °

-1 16 -30 16 -1
-1 16 -30 16 -1

1 -6 I4 -4 -15 10
-10 61 -156 214 -154 45

(2.14)

The upper two rowsauudthe io_er two rows representnon-symmetric fourthorder accurate

approxiumtionto the second deri_i_e without using boundary values. The internal rows

6



are symmetric and represeat central differenciM approximationto uzr to _be sLmeorder.

. ,_ote that D is not nq_tive de_dte, and neither is the symmetric part of i(D + Dr) which

isgi_nhr.

90 -144 213 -156 61 -10
-144 -30 12 13 --6 1

213 12 -60 32 -2 0
-156 13 82 -60 32 -2

61 -6 -2 32 -60 32 -2
-10 1 0 -2 32 -60 32 -2

1
24ha

-2 32 -60 32 -2 0 ) -10
-2 32 -60 32 -2 -6 61

-2 32 -60 82 13 -156
0 -2 32 -60 12 213
1 -6 13 12 -30 -144

-]o 61-156 213-144 9o

(2.15)

lu order to construct M we need to specif_..4L, Ajt, _, and rR. We construc_ AL as

follows:

_L- AcL)+_A|L) (_.te)

7
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where
al o_ ¢_ (q as 0 ... 0
az o_, o_ o., ,zs 0 ... 0

A_z'}- az _z as a4 as 0 ... 0 , (2.17)
a_ _ c_ _ as 0 ,.. 0

_L= di,,g[-Z_,,/Tz,o,...,o] (2.z8)

o1
- s-zo zo-5 z o ... o

.4,_'.)= . (2.z9)
-I 5 -lO lO -5 1 0 ... 0

The o's are given by

_s _ 14

a: : - _'L+ _,+2-_i+i_z

1 ll 4I_ 1 4

8



._o_ethat _t_L)vsires a vectorwhosecomponents,,rethe extrapolatedvalueof v at z = FL

(i.e.,_L(t)), to fifthorderl:c_rs,cy;whileA.(L)vgivesI vectorwhosecomponentsrepresents

(0sth/_zS)hs. SinceCr (see2.18)is d orderunity,thenALv -- (A_) -4-c_A(.L))vrepresenu

an extrapolationof v to tq-Lto fifthorder.

BeforeusingAs, in (2.11)or (2.6) we mustdefine_:

_mJ* t

= 12hsasq_t_,_,fs, n,n,0,...,0] (2.21)

where

n : 71/2_

= (xls- as,',)/a, (_)

•, = (-se-_,)la,

rs = (11 - (,.n)/ol

The right boundary treatment is coastructed in a similar fashion, _nd the fonn_e corre-

_ondiug to (2.16) - (2.22)become:
I

i 0 ......... 0 O ¢_v-4 oN.$ o_r-3 a_,'-1 o_,
0 ......... 0 O QN-40,_,_:j a,%,-2 a_'-I o,%.

I A(_)_ O......... 0 0 oN-, o,_.,,a,_._OS-__,_, (2.24)-- 0 ......... 0 0 @_.,-4 QN-4 _r_,._ a_,._] o,_,. '

0 ......... 0 0 c_,-4 a_;.s a_,.2 oN-_ a_.

' 0 ......... 0 0 a/_,-4 aN-30N-_I a_'.] o_,"

9
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ce=mq(o,o,...,o, -2o_,/71] (2.25)

o o ... o ] -5 lo -lo 5 -1
o o ... o _ -5 lo -lo 5 -I

4 _)- (_26)
0 0 ... 0 1 -5 lO -10 5 -I

The a's arehe:e:

a^,-I =- "m+ +2"7k+

4 7_ 7 s I 4)

1 11_ 1 s 1.4
•,_'-, = _'i_+ _-_ • _/, + _,_,

'r,,v : 71/2o_v

10



II I -- --

_.__ = (-94- a_,'._',v)/a_v

_v-t = (ll3-a_v._v)/o_. (2.29)

_., = (1!-aN-4'c,..)/a.v

We _ now rely to construct

- [,_(@)+¢_A(.m)+,_(A_ +,:.A(."))]_}(2._0)

Upon uslug equltious (2.14}-(2.29) in (2.30) one gets:

M �d�p�T
2

0
W('+) 0

-2 0
-_ 0

0 ... 0-2 32-60 32 -2
-2 32 -60 32 -2

_-_ -2 32 -60 32 -2
eee ts **e tt Qe

-2 32 -eo _ -2 o ... o
0 -2

-2
0 Win)
0

(2.31)

11
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where Ll,'tt,_and W(_) are 6 × 6 blocksgiven by:

wcL)= w_")+x_L) C2.S'2)

w(R)=wln)+"_a) (2._)

0 i'l_j=l

_i_,}" l < i,j < 5 (2.s4)

-(a,_j +Qj_) i,j # I

-1 0 0 0 0 0
0 -30 12 13 -6 1

0 12 -60 32 -2 0 (2.36)W(t) a, 0 13 32 -60 32 -2
t

0 -6 -2 32 -6O
0 1 0 -2 32 -6O

t

-60 32 -2 0 I 0 v
32 -60 32 -2 -6 0
-2 32 -60 32 13 0

|_R) : o -2 a2 -co 12 o (2.37)
1 -6 13 12 -30 0
0 0 0 0 0 -1

12
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The next task is to show _b_ _ .z i(M.t.._r) is ne_tive d_ite. We write the symmetric

marx ,_ asa sum of five s_mmetricm._ices,

: _ [_, +_, +(24-_)_,+_,+_,]. (2._)
Weshsdlshow th,t _I is neptive definite,md that _r_(j = 2,... S) are ,on-positive definite.

The _f's are _iveu by

-_000 0 0
-2 _1 0 :

i'_ -2 1

N" 0 0 I --4 ..l :_L+_,+_ (2.391

1
middle bk_.k.

13



000 0 0 0
000 0 0 0
ooo o o o 0
000 0 0 0
0 O0 0 -! 2 -1
0 O0 0 2 -5 4 -1

-1 4 -6 4 -1

.':t,= (2.40)

-1 4 -6 4 -1
-1 4 -5 20000

0 -1 2 -10000
0 00000
0 00000
0 00000
0 00000

000 O0 0
000 O0 0
ooooo o 0
000 O0 0
000 O0 0
000 00 -1 1
000 00 1-2 1

1 -21

•_ = (2.41)

1 -2 1
1 -100000

000000
000000

0 oooooo
000000
0000 O0

14
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0

-2_,_..4_.-4 -(a_'-3rjv..4 -(o_,-2_',_'-4-(o_v-l_._ 0

-(a_-8_-4 -2a_..s_ -(n_.:,_ -(a_r-I_-s 0

o -_ s2- p -e0+_p z2-
-((,^o___, -(_._:r_._ -2_.zr_r.: -(_-0"_'-_ 0

!
1 -6 13 12- _I -30 + 2.B

-(_v-_'-, -((,_-,_v-_ -(_-_-= -2¢_-._,._ 0
+_,-_'-_) "l_,v._v-_ +_._-=_.-_)

o o o o o -z/2

(:_._)

Lecus consider._/_- see(2.39);it may be decomposedas follows:

1 -1 1 0

,_',-- • • • ". + o (_4_)is, "e • _e • •

l -I l -I

Thelastma_trlxin n¢m-pad_vedefinite.Thetint termis • psoductof a_regularrna_trixwith

its _,mspose.,henceits nes_ive is a u_-tlve definitematrix. Thus weest_lished thst _1_

16



is neg_ti_ definite tot amyfinite dlmensi_ ._'. All its eilpmvaluesare neptive. It remains

to show th_ the eigenvlduesof _rn/_2 (see (2.38) are boundedawa_'from l_m by • constamt

_ _ ..-.0 (a'V..-._).

Coimidet • symmetrictzidiof)nal matrix $ _th, like -_n, ¢onsUmtdiagonals:

b a 0
a 6 a
0 a b a

S . (2._)

a 6 a
a 6

Designateby D._'.hedm_rmiuut of the upper-leP.,j x j mb-m_rix. ThusDz ,=6, D2 =

['']det a b ,etc.

We h,,ve then/)n = 6,/_ = 6s - a2 and in pneral

It can be shown (see Appendix I) thit the solution to the recursiourdltion (2.46) is

where

Pz - 2a_

,, = I_2_

17
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I
B = [(_-w,)_=+ _,] (2.51)

/_s-Pa

We have alreadyshown thst M_ is ne_ti_ definite. The eisanvalue of -_1 are found from

thus either ,X-- -l[2Bo < 0 (bec_se _o wiUbe taken positive) _ A-- eiganvadueof._/rl< O.

We would like to investig_e the belmvior of the elgeuvaluesof _JOt. In particular we

_uld like to show thlt these eisenvalues (which are neptive) are bounded sway from zero.

To show this we anal,v_ the behavior of ,_fs- )_l as N ina_e8. We now take $ = ,_1 - A1,

Its determinant is 8jven by D^,,s. SubstitutinS (2.48)-(2.51) into (2.47) with j = ,_r_ 2 we

get.after some elementary msm_pul_tions

2Jv-_

wbere

t
p = _; b=-2-_; ,= 1 (2._)

r =R _-=_ ==2

O = _'1(p/6)

Prom (2.52) we req.d_e

ON-2= o (2._)

18



This is eqvi_,_ent,see (2.53), to requiri_

e = _:-_, _ = I,...,._- _. (2._)

R'omthe d_tio, of 0 and (2.54)we obtain

tan (_-1)= " _-_(_ "t"4)2-I-A , (,_< 0). (2.57)

Squaring (2.57) we pt • quildrl_ic equation for A,".hesolutionof whichis

[(= -2 l, l+_'_,N_l//

ForanyfixedN, the sma]kst wlum of l,_li. si_. by (2.5S)for/_: 1,

[ (--")]- _"I*I- -2 l - _ __ I "

As jVinae_, we hL_

(( ,',_..., -, -2 I- )-_(N_ip +O
. Ir2

' (N- 1p _ -wa/_" (2.60)

Thus the eiSe._va]umof _i/24/as (snd hmce of -_i/24/82)_re bounded_w&yfromzero by

,h,,,_,;-(_).
We.ow conslde)._f_,Onecan verifythat

._,=-_,.,_,_ (2._z)

19
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where

000000
000000
oooooo 0
000000 0
000000 1 0
000000-2 1 0

0 1 -2 1
1 -2 )

,_,= (_._)
1 0

01 -2 10
0 o I -_ o

0 10000
00000
00000
00000
00000

Therefore,_r_is uon-positi_edefinite, k - similarfashion Jl_sb non-posflive definite because

2O



with
000000

, 000000
000000
000000
000000
000000-1

1 -1
_s - . (2.64)

1 -1
100000
000000
000000
000000
000000
000000

The mat:ices ._4 and ._s are N x N matrices with zero entrim except for 6 × 6 upper-left

(lower-right)blocks. It is su_cieat to show that thew blocks L-e nqa_ive definite. This

was done symbolically usiq the Mathematica software and plotted for 0 _<"t_,'_n < I and

8o : 1..@, and ._, are indeed nqafive definite for, 0 _<-y_,_ < 1. Thus we have shown

thtt ._ = _(M + M T) is indeed ne_ve de,site, and its ejsenvalues are bounded awey

from zeroby (-r2/24), even as ._' -., oc, and the errorestimaxe (2.13) is valid.

t

' 3 The Two Dimensional Case

Weconsider the inhomopneous diffusionequation, with comtant coefficients,in a domain

fl. To begin with we shall ,dsume that fl is _vex and has a boundary,curve _ e C*.

The convexity restriction is for the sake of simplicity in presentingthe basic ide_ it willbe

21
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removedla,ter. We thus have

(,._-=_ _-_+ +Y'(z,u;e); z,u(fl; t>_ _>0 (3.1a)

u(z,I/,O)--- uo(z,_) (3.1b)

,,(,,e.t)ln=,,8(t) (3.1,:)

We sh_l ref_ to the fcllowinS _d reprm_tatkm:

Y

k

f Q

_.,I" -..........
e

: • :. :
t e • •

/,,i j-2 j=J / _.Hc
, ill ,

.It

Fisure 2: Two dimemion,d grid.

V,'ehave Ma ro_,sand Mc columns inside ft. Es_ row and each column hus discreitised

structure as in the one I-D r._se,see flliure 1. Let the number of srid points in the k_ row

be denoted by R_ and similarly le_ the number of grid points in the 3_. column be Ca. Let

22
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t

the solution projection be desisna_.d by Ui,_(f). By U(t) we mean, by analos:yto the I-D

, case,

U(t) - (.s_,u_.s,...,un,,i;ul,2,u2.s,...,ue.o_;...;us.va,.z_,...._,tA.M_)

i (ul,ua,...,uM_) (3.S)

Thus, we have arrsn_ the solution projection array in _ctors accordingto ro_'s, starting

from the bottom of ft.

If _e arr_np this array by columns(instead of rows) we will have the followingstructure

U(=)(t) = (,1._,u_,..., ul_-,;,z.I, u2_,..., u=_;...; uz_._,,z_,._,..., "M,,,M,)

t,,(d ,,(d . (d-= _,,I ,-_ ,--.,"H,, (3.S)

Since U(e)(/) is just a permutation of U(/), there must exist an orthosonadmatrix P such

that

U(C)(t)= PU (3.4)

If the length of U(t) is t, then P is an t x f matrix whose each rowcontains t- 1 zests and

a single I somewhere.

The second derivative operat_ _/Sz s in (3.1a) is representedon the 7Pitrow by the

di_rentiation ma_rixD(_"), whose structure is given by (2.14). Similarly let _P/Sp_ be _iven

on the 3_ column by D__), wh_ee structure is also given by (2.14). With this notation the

Laplacionof the solution projection is:

a==+ a_, "_(_): z_')u + + (s._)

23
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where
Di

z_-)= o_) ;0,_- o(,,) (s.e)

where Z)(') sad 2)(') are (t × t) matrices and have the block structures shown. _.') ,rod T_.')

are the truncation el_rorst_uxiated with D(') and 1:)(_), :espectiveiy. We now cad] atteation

to the fact that _D(t} and Ipb} do not operah_ ou the same vector. This is fixed using {3.4):

V:iu/_(t) = V_T -- (1P(') 4. p:r_)/e)p)u 4-T(.'r}4. PTT(.') (3.'/')

Thus(3.1a)becomes,bysa_osyto (2.s),

cFd
-_- = k(ZJ') + PrD(_)P)U 4. k(T(,=)4. pT_,}) 4. f(t) (3.8)

where f(t) is f(=,y;t) arraesed by row ss t vector.

Before proceeding to the semi-discrete problem let us ddne:

M,c')=D_';-,._.AL.- _._ (S.,)

where _;..,,Az,, are the _a, sad A_ defined in section 2, tppropriate to the k tk row; similarly

for r& sad Ap... In the same way, define

_J'). o_')- ,,,,A,.,- ,T_A,., (3JO)

where B and T stand for bottom and top.

We can now write the eemi-dim_eteproblemby saalolD'to (2.6)

dV
-_- = k(._l(') 4-/d'.bq(_)P)V + kG(') + kP_'G(e)+ f(t) (3.11)

24



whereV isthenumericalapproximationto U;

] tM'('_ ;Me,)_- ._,,_ ; (3.12)

and

a(') -- [(,_,_,+,_,_,),...,(r._,+,_s_,),...,(,L._s,..+,_.._.,)],
Q(') = [(,_ +,r,_r,),...,(,m,D,+ ,_,rr,),...,(,B,_s._=.+'_,.ST,,.)].(3.]3)

Subtracting (3.U) from (3.8) we get in s f-_hion similar to the derivation of (2.9):

._ = k[J,4(') .,. kT= (3.14)/'T_I')P]I_+

where ]_ = U - V is the two dimensional array of the errors, (u, arranl_d by rows as a

_t_r. T_ is proportionalto the truncation error.

The time change of I}E ]l_ is given by

l_d
_ IIE i]_=k(]_,(,H(') + pT_l,)l,)S) + _(E,Ta) (3.15)

The symmetricpartof J_4(')+ PI"/I,((_)Pisgivemby

_[(,_(-)+ + + (3.16)_4(,)_) pT(.a4(_) M(,)T)p]

CleaHy ./b/i-) + ._/(,|t and ,',4(_)+ ._/(_F are block-diagoaal matrices with typical blocks

givenb.vM_(') + M(')r sad M(') + M_(')r. V/e havealreadyshowninthe one dimensional

case _hateach one of tho_eblocksis negative definite and bounded_w_yfrom zero by r_/24.
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Thereforethe operant (3.16) is _.o neglLtivedefinite and bounded aw_y from zero. The

rest of the proof follows the one dix_=_.,41 case and thus the norm of the error, JJE [J,is

boundedbya _ant.

H the domain fl is not convex or simply connected the_ either rmrs or columns, or both,

may be "interrupted" by Lift. In that case the values of the solution on each _internal"

interva/(see figure [3] below) are tad_ as _arote vectors.

i
t
t

/ x

3: Two dim_siond grid, non convex domain.

Decomposing"interrupted",,_ectorsin this fashion iea,_s the previous anadysisunchanged.

The leu_h of U (or U(_)) is 8_in l, where t is the number of grid nodes inside ft. The

differentiationand permutation matrices remaint x t. Note that adding more "holes"inside
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Offdoes not _mqte the 8eneral approach.

4 Numerical Example

In this section we describenumericsdrmults for the follo_q problem:

_= _,_ + ,,,,) + Y(z,y,O, (z,y)dl, O,
t > (4.1)

where fl is the region conudned between a circleof ra_tius_ -- 1/2 tad inapt circleof radius

r, < 0.1. The innercircle is not ¢_ncentv/cwith the outer one. Specificallyfl is describedby

{(,-.s)'+(_-.8)'<__/4}n{(,-.6)'+(_-.s)'>(.s-_)';o<_<._} (4._)

The car_esiangri_ in which fl is embeddedspans 0 < z, lt < 1. We took _z = _, and ran

severalcases with A= ._ 1/50, 1/75, 1/100. The geometsTthus looks as follows:

Y

z,,O O..qO_ 1 z

Figure4:
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The source function J'(z,_,t) _s chosen differentfrom sero so that we could ,mip ,n

ex_c_ ans/ytic solution to (4.1). This enables one to compute the err_ E_ - U_ - V/_

_ex_ctly" (to machine ,_c_sracy). We chose &-- I and

.(z,_,t) = 1+ cm(10t-10za- 10_m) (4.3)

This leads to

f(=,y,t) = 400(zs + _:_)cm(10t-10zs - 10y_)

- 50sin(10t- lOz=-- lOy=) (4.4)

From_heexpression for u(z, I, t) one obtains the boundary and initial conditions.

The problem (4.1), (4.2), (4.4) wL5solvedusing both a "standard_ fourthorderalgorithm

(a 2-D version of (2.3)) and the new _SAT," or Zboundederror,_ _pproach described in

Section 3. The temporal sdv_ce was visa fourth orderRuMe-Kutta.

The standard alSm_tlunwu runfor_c = 1/_50and arsmSeof 0 _<_ < .01 (.09 < r__<3).

V,'efound that for _ _ .0017323, the runswerestable and the errorbounded for _Iong"times

(10s time steps, or equiwdmtly t s, 2). For 0 _<6 < .0017233 the results begin to diverse

expon_tially fi_m the Lnalytic solution. The "point of d_" depended on & A

discussionof these results is deferredto the next section. Figures5,6,7 show the/,=-norm of

the error vs. time for diffeslut rtuiiiof the inner "hole."

The sime confisurations were_ run _ the "boundederror" ,dsorithm describedin

Section 3 (see eq, (3.5)), and the results are shown in figures 8,9,10,11. It is seen thst for

28



6's for which the standsrd methods fails, the new algorithm still has a bounded error, as

predictedby the theory.

To check on the ordu of tc_, the "SAT"runs (with 6 .- 0) were repeu_ for

_kz =.,_ .. 1/75 and 1/100. Figure 12,13,and 14 dsow the loss_ithmic slope of the L=,Ls

lnd L.o ezro. to be less th-,, -4; i.e., we indeedl_ve a 4_ ordermethod. That the slopes

are ],,rser in magnitude than 4.5 is attributed to the h_ct that as Az - ,_y decreases the

percentage of _.uteratl" points iucrmmm(the boundary palnts have formally only _ oder

accuracy). It is therefore pemlble thai if the numbar of grid points was incrmmedmuch

further, the slope would teed to -4. Lack of computer resourcesprevented checking this

point further. (For Az =, 0.01, running 20,000time steps, t ffi .1, cputime on • CRAYYMP

is about 5 hours). It should also be noted thg the "bounded-ernx" slsorithm was run with

• time step, At, twice as large as the one used in the standsu_lscheme. At this larger ._t

the stsndm_i scheme _pJodes= immediately.

• rr err

C. 0_3 O.0003

¢ •¢C025 ¢. O00;t_

©.¢002 C.QOO;t

C.000'.S =. 00015

O.CG=" O.O0_'-

0.occ0S _ 0.C0:0S

o c.2s©_s©.?Si _,_SS.$_,n _t o o._sc_sc._s i -._s l_s :..',s 2t

Figure 5:6 =, 0.0017325, Staud,,rd Figure 6: _ ffi 0.0017323, Stands_d
scheme scheme
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ez'r eft

-°°°°
,2ooo.3 • e'°":Sl V V V V V V V V V V V V
",CO::O O. 0003

1¢=_.0 O.0001S

6000.3
¢. 0001

4_'00:)
• C.00005

:_ooD..... o.iooi::o?_o4::o:_O,-_o'._'o,' o.i:_ o ::s i"i.i" : _iS _ 3:s i _

Figure7: _;: 0.0015, Sr_dm'd scheme Figure 8: $ = O,SAT sr.heale

0.0002S 0.0002S

C.00=2 O.OIC2

O.OOC*S O. 000:1S

C. 0001 ©..30._'.

c.©ooos o.oooos

Figure 9: _ = 0.0015, SAT scheme Figure 10:6 = 0.001732,q,SAT scheme

_r L,_:I,'J

O.0003 -:_.

O. 00025

O.0001S

O.0¢0¢.x .... : - _. 11,Ol;;_t',

c.s :,"_,'.k : a.s 3 :_S ;_-*..s



:,ogF.,2|Pit: 4,412S3 - 4.6703S LoS*N] Log|mx] TLt: 4.88U4 - 4.S7438 LcgfN]

"i'l ._. "',!

13: Orderof accuracy _ Figure 14: Orderof accuracy Loo

A study of the eBect d _ of At shows thaAthe inst_bJlitia exhibited aJ)oveare due to

the time-atepbeing near the C.F.L.-iimit. It is ia_ _at this C.F.L-I_t depends so

stronglyon the apometry.

5 Conclusions

(i) The theoretical results show that one has to be very careful when using an algo_tlun

whine dJf_mtiatian zna_x, or rather its symmetricpart, is not negative delete. For

some problems,rich "standard"schemes will give good answers (i.e., bounded errors)

and for others instabgky will se_ in, Thus, for example, the _s_ndud" scheme for

the I-D case has a matrix which, for all 0 < "_,'/a < 1, thoul_hnot nel_tive definite

has eisenvalua with nelative readports, This m, in the 1-D case, the tempor_dly

asymptotic stability. In the 2-D _ even though each of the block sub.ma_ces of

the l x l z-and-Itdi_ermti_tion maAricmhas only nqative (real-_) eigenvalues, it

is not assured that the sum of the two l x 1 matrices will have tl_s property. This

depends, among other things, oa the shape of the domain and the mesh size (becam_
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the mesh slze determines, for a givea g_znetr$, the "yLand "rat'salong the boundaries).

Thus that we might have the "paradoxical"situstioa, tl_ for a given domain shape,

successive mesh rekement could lead to instability due to the occurrenceof dmtabi-

lising "t's. This cannot h_ppen if Gmeconstructs, as was dooe here, • schemewhose

di_erentizfion matrices have symmetric p_rts that m nep,tive de/_nite.

It is also interesting to no_e that if cmeuses explicit standard method then the allow-

able C.F.L. ma.vdecrease ext_ne_y rap/allywith change in the geometry that causes

decreasein the "r's. This point is brought out in figures 5 to 7.

(ii) Note that the oo_tructkm of the 2-D algorithm, and its aaal)_is, which wee

on theI-D case,canbeextendedh &similu (albeit more complex) fashion _o higher

dimensions.

(iii) Also note thLt if the diffusion coefllcient k, in tbe equation

ut : kLXau

is a function of the q_tial coordinates,Jr - /:(z,j,z), the previousm_dv_s goes

throughbut the emmlLvmtimaa_for the error is nowfo: a diE--t, but equivalent

DOIZD,
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Appendix I

We s_rt with

D,= W__,- asD_., (A.t)

with

O_ffi6,V_=6_-. s (A.2)

We asg_ with (A.I) • b_aer_iug function f(z),

f(=)= _ z)_ ¬�Ì�(A.3)

Multiplying (A.I) by _-_ for _ j >_S, and mmmfiugboth sides we obtain:

t- Ds - De= = L)'- DI QS_. (A.4)z

leadingto

I [ v, + (_ - 6v_)z,]/ = _ =' - (V.')=+ (l/.')J

|

I . +(D,-•_ (z- .l)(z -._) (A.5)

where us, u_ are given by (2.48), (2.49).

Werosy_o present f by

l=l_[ A B ] (A.6).* (z - ul) + (=- u2)

_, _. . ,_ ,



Compmns(A.6),ad (A.5)weSet_on f_ A andB as Sirenin (_.50),(S.51).Ex-

p_ding the denominator in (A,6) we set the foUowiq series for f

f(=)--._ + _, cA.7)
fromwhich it.immextiLtelyfollows (see (A.3)) that
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